Лабораторная работа 3-12

КОЛЬЦА НЬЮТОНА

Е.В. Данилова

Цель работы

Изучить явление интерференции света. Определить радиус кривизны плоско-выпуклой линзы при наблюдении колец Ньютона в монохроматическом свете известной длины волны; определить неизвестную длину волны монохроматического света при заданном радиусе кривизны линзы.

Теоретическое введение

Согласно волновой теории, свет представляет собой электромагнитные волны, причем составляющая электромагнитной волны – напряженность электрического поля \vec{E} (световой вектор) – ответственна за большинство наблюдаемых оптических явлений.

В электромагнитной волне вектор напряженности электрического поля \vec{E} зависит от координат и времени согласно выражению:

$$\vec{E} = \vec{E}_0 \cos(\omega t - \vec{k} \cdot \vec{r} + \varphi), \qquad (12.1)$$

где $\stackrel{P}{E}_{0}$ - амплитуда волны, $\omega = \frac{2\pi}{T}$ - циклическая частота, \vec{k} - волновой вектор ($k = \frac{2\pi}{\lambda}$ - волновое число), φ - начальная фаза, T - период, λ - длина волны.

Если амплитуда, частота, длина волны и начальная фаза не меняются со временем, то вышеприведенное выражение описывает *плоскую монохроматическую волну*. Реально эти условия не выполняются, т.е. монохроматическая волна является идеализацией. Электрическая

составляющая световой волны \vec{E} заметно изменяется при распространении света в различных средах, при прохождении через препятствие, при сложении волн.

При распространении в пространстве нескольких волн результирующее колебание в любой точке представляет собой геометрическую сумму колебаний, т.е. *суперпозицию волн*.

Особый интерес представляет сложение волн, при котором наблюдается явление *интерференции* света когда, происходит перераспределение энергии светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. Эта *картина* называется *интерференционной*.

При суперпозиции двух волн, интерференционная картина возникает при выполнении следующих условий: волны когерентны (разность начальных фаз $\varphi_2 - \varphi_1 = \text{const}$); волны имеют одинаковую циклическую частоту ($\omega_1 = \omega_2 = \omega$); волны имеют одинаковую поляризацию вектора \vec{E} ($\vec{E}_1 \parallel \vec{E}_2$).

Результирующее колебание в точке F в данный момент времени t, возникающее при сложении двух световых волн, приходящих их разных точек F_1 и F_2 , есть:

$$\overset{P}{E}(\overset{\rho}{r},t) = \overset{P}{E}_{1}(\overset{\rho}{r}_{1},t) + \overset{P}{E}_{2}(\overset{\rho}{r}_{2},t).$$
 (12.2)

Введем понятие оптической разности фаз:

$$\Delta \varphi = k(r_2 - r_1) + (\varphi_1 - \varphi_2), \qquad (12.3)$$

и оптической разности хода:

$$\Delta l = n_2 r_2 - n_1 r_1, \tag{12.4}$$

где n_1 и n_2 - показатели преломления сред, в которых распространяются первая и вторая волны. Если среда – воздух, то $n_1 = n_2 \cong 1$, тогда $\Delta l = r_2 - r_1$. В дальнейшем положим, что $\phi_1 - \phi_2 = 0$. В этом случае оптическая разность фаз между двумя волнами будет:

$$\Delta \varphi = k \Delta l = \frac{2\pi}{\lambda} (r_2 - r_1). \qquad (12.5)$$

Интенсивность световой волны I пропорциональна квадрату ее амплитуды $\stackrel{\nu}{E}_0$, т.е. $I \sim E_0^{2}$. Возводя (12.2) в квадрат, будем иметь, с учетом (12.1):

$$E_0^2 \cos^2(\omega t - \vec{k}\vec{r} + y) = (E_{01}^2 + 2E_{01}E_{02}\cos\Delta\phi + E_{02}^2)\cos^2(\omega t - \delta), \quad (12.6)$$

где E_{01} и E_{02} – амплитуды складываемых волн, $tg\delta = \frac{E_{01}\sin(\vec{k_1}\vec{r_1} - \phi_1) + E_{02}\sin(\vec{k_2}\vec{r_2} - \phi_2)}{E_{01}\cos(\vec{k_1}\vec{r_1} - \phi_1) + E_{02}\cos(\vec{k_2}\vec{r_2} - \phi_2)}$, а $\Delta\phi$

дается выражением (12.3).

Наблюдаемая (регистрируемая) на опыте интенсивность света представляет собой среднее значение I, взятое за промежуток времени $\Delta t >> T$ ($T = 2\pi/\omega$ - период световой волны). Усредняя выражение (12.6) по времени, получим:

$$E_0^2 = E_{01}^2 + 2E_{01}E_{02}\cos\Delta\phi + E_{02}^2$$

или

$$I = I_1 + 2\sqrt{I_1 I_2} \cos \Delta \varphi + I_2 .$$
 (12.7)

В данном месте пространства получаем условие максимальной интенсивности (*условие максимума*), если cos Δφ = 1, откуда

$$\Delta \varphi = \pm 2m\pi, \ m = 0, 1, 2, \dots$$
 (12.8)

и условие минимальной интенсивности (*условие минимума*), если $\cos \Delta \phi = -1$, откуда

$$\Delta \varphi = \pm (2m+1)\pi, \ m = 0, 1, 2, \dots$$
 (12.9)

где *т* – номер (порядок) спектра.

Но $\Delta \phi = \frac{2\pi}{\lambda} \Delta l$, следовательно, оптическая разность хода, соответствующая максимуму

интенсивности:

$$\Delta l_{\max} = \pm m\lambda, \ m = 0, 1, 2, \dots,$$
(12.10)

а оптическая разность хода, соответствующая минимуму интенсивности:

$$\Delta l_{\min} = \pm (2m+1)\frac{\lambda}{2}, \ m = 0, 1, 2, \dots$$
(12.11).

Таким образом, *максимум интенсивности* при интерференции наблюдается тогда, когда оптическая разность хода равна четному числу полуволн, а *минимум интенсивности* – нечетному числу полуволн.

Существуют различные способы получения интерференционной картины. Частный случай – интерференционные «полосы равной толщины» (геометрическое место точек, в которых имеет место интерференция), примером которых являются «кольца Ньютона».

В данной работе наблюдается интерференционная картина, возникающая при отражении световой волны от верхней и нижней поверхностей тонкого клина. На рис. 12.1 приведены возможные варианты отражения световых лучей от поверхности клиновидной пластинки. В первом случае (рис. 12.1*a*) интерференционные полосы локализуются над верхней поверхностью клина, во втором случае (рис. 12.1*b*) – под нижней поверхностью клина.

Рис. 12.1. Локализация полос равной толщины (жирная штриховая линия) при отражении параллельных пучков света от тонкой клиновидной

пластинки: a – над верхней поверхностью клина ($d_1 > d_2$); δ – под нижней поверхностью клина ($d_1 < d_2$).

Таким клином служит воздушная прослойка, образованная поверхностью плоской стеклянной пластины и соприкасающейся с ней выпуклой сферической поверхностью линзы большого радиуса кривизны *R* (рис. 12.2).

При нормальном падении монохроматического света на плоскую поверхность линзы в отраженном свете наблюдаются полосы равной толщины в виде чередующихся концентрических темных и светлых колец, называемых *кольцами Ньютона*. Зазор между линзой и плоской пластиной равен $(d \pm d_0)$. Идеальный контакт отсутствует. Мы должны взять $(+d_0)$ в случае, если в область контакта попадает пылинка, и $(-d_0)$ – в случае

получении колец Ньютона.

Рис 12.3. Геометрические построения при $d_0 = 0$,

сильного «прижатия» линзы к поверхности пластины.

В результате мы имеем две интерферирующие волны: первая возникает при отражении падающей волны от нижней поверхности линзы, вторая – при прохождении волны внутрь

воздушного клина и последующего отражения от плоской пластины. Эти две волны имеют оптическую разность хода:

$$\Delta l' = 2(d \pm d_0).$$

Следует учесть, что при отражении от оптически более плотной среды фаза отраженной электрической составляющей волны скачком изменяется на π , что равносильно дополнительной разности хода $\frac{\lambda}{2}$. При отражении от оптически менее плотной среды фаза отраженной электрической составляющей волны не изменяется.

Таким образом, полная оптическая разность хода волн 1 и 2 (рис. 12.2) равна:

$$\Delta l = (2d \pm 2d_0) + \frac{\lambda}{2}.$$
 (12.12)

Условие максимума интерференции (12.10) запишется в виде:

$$\Delta l_{\max} = (2d \pm 2d_0) + \frac{\lambda}{2} = \pm m\lambda, \qquad (12.13)$$

где *т* – порядок интерференции (номер кольца Ньютона)

Соответственно, условие минимума интерференции (12.11) – в виде:

$$\Delta l_{\min} = (2d \pm 2d_0) + \frac{\lambda}{2} = \pm (m + \frac{1}{2})\lambda.$$
 (12.14)

В дальнейшем будем обозначать радиус колец Ньютона через r_m , радиус линзы – R. На рис. 12.3 видно, что r_m перпендикулярен диаметру 2R, r_m опущен из вершины прямоугольного треугольника, т.е. $r_m^2 = (2R - d)d = 2Rd - d^2$. Поскольку d << R, то $r_m^2 \approx 2Rd$; $d = \frac{r_m^2}{2R}$. Следовательно:

$$\Delta l = \left(\frac{r_m^2}{R} \pm 2d_0\right) \pm \frac{\lambda}{2}.$$

Условие максимума (12.13) приобретает вид:

$$\frac{r_{\max}^2}{R} \pm 2d_0 \pm \frac{\lambda}{2} = \pm m\lambda ,$$

или

$$r_{\max}^2 = (m - \frac{1}{2})\lambda R \,\mu \, 2d_0 R, \ m = 1, 2, 3,...$$
 (12.15)

Соответственно, условие минимума (12.14) приобретает вид:

$$\frac{r_{\min}^2}{R} \pm 2d_0 \pm \frac{\lambda}{2} = \pm (m + \frac{1}{2})\lambda,$$

или

$$r_{\min}^2 = m\lambda R \,\mu \, 2d_0 R, \ m = 1, 2, 3,...$$
 (12.16)

При идеальном контакте $d_0 = 0$.

График зависимости $r_m^2 = f(m)$ демонстрирует, каков контакт между линзой и плоской пластиной в выполняемом эксперименте.

Если интерференционная картина наблюдается в проходящем свете, то она будет обратной по отношению к картине в отраженном свете: там, где наблюдались темные кольца, будут наблюдаться светлые, и наоборот.

Описание экспериментальной установки

Общий вид установки представлен на рис. 12.4.

Рис 12.4. Общий вид экспериментальной установки.

Источником света служит лазер 2 с длиной волны $\lambda = 632,8$ нм, питаемый от источника тока 1. Световой поток, выходя из лазера, падает на отражатель 3. Отражатель меняет направление распространения потока, в результате чего свет, проходя через диафрагму 4, падает на устройство 5, дающее интерференционную картину в виде колец Ньютона в отраженном свете. Затем, отраженный поток, пройдя линзу 6, попадает на полупрозрачный экран 7, где формируется увеличенное изображение интерференционной картины и измерительной линейки в масштабе 36:1. Плосковыпуклая линза большого радиуса кривизны и стеклянная пластина, с которой соприкасается линза, помещены в общий корпус и образуют единое устройство 5. Все элементы установки монтируются на столике 8 с магнитным покрытием.

Технические данные приборов занесите в табл. 12.1.

Таблица 12.1

Название прибора	Пределы измерений	Число делений	Цена деления	Класс точности	Абсолютная приборная погрешность	

Технические данные приборов

Порядок выполнения работы

При выполнении работы следует строго соблюдать правила техники безопасности и охраны труда, установленные на рабочем месте студента в лаборатории. Внимание! Избегайте прямого попадания лазерного излучения в глаза!

1. Разместите все элементы установки на предметном столике.

2. Включите лазерную установку.

3. Произведите юстировку оптической системы и получите изображение интерференционной картины на экране. Изображения колец на экране могут иметь овальную форму, поэтому надо измерить максимальный D_1 и минимальный D_2 диаметры каждого кольца и взять их среднее значение.

4. На полученной интерференционной картине измерьте диаметры D_1 темных (или светлых, согласно индивидуальному заданию) колец и запишите соответствующие им номера колец *m*. Колец должно быть не менее десяти. Результаты измерения диаметров D_1 (мм), радиусов колец r_1 (мм), r_1^2 (мм²) занесите в табл. 12.2.

5. Повторите измерения согласно пункту 4 диаметров D_2 (мм), темных (или светлых, согласно индивидуальному заданию) колец и соответствующие им номера *m* при положении измерительной линейки, перпендикулярном первоначальному. Результаты измерений D_2 (мм), r_2 (мм), r_2^2 (мм²) занесите в табл. 12.2.

Таблица 12.2

Результаты измерений

Номер т					
-го					

кольца					
<i>D</i> ₁ (мм)					
<i>r</i> ₁ (мм)					
$r_1^2 (MM^2)$					
<i>R</i> (м)					
<i>D</i> ₂ (мм)					
<i>r</i> ₂ (мм)					
$r_2^2 (MM^2)$					
λ (нм)					

Обработка результатов эксперимента

1. Расчет радиуса кривизны линзы **R** (м)

Запишите длину волны источника света согласно индивидуальному заданию.

Постройте график зависимости $r_1^2 = f(m)$. Определите по нему контакт между линзой и плоской пластиной. Тангенс угла наклона этой прямой равен:

$$\lambda R = \frac{r_{mim1}^2}{m} \, .$$

Среднее значение радиуса кривизны линзы:

$$\overline{R} = \frac{r_{\min}^2}{m\lambda} \quad (M).$$

Относительная погрешность определения *R*:

$$\delta_{R} = \frac{\Delta R}{R} \cdot 100\% = (\frac{\Delta \lambda}{\lambda} + \frac{2\Delta r_{\min}}{r}) \cdot 100\%$$

При расчете используйте данные табл. 12.1 и 12.2 с учетом 36-кратного увеличения линзой 6 изображения колец на экране.

Абсолютная погрешность ΔR :

$$\Delta R = \frac{\delta_R \cdot \overline{R}}{100} \quad (M).$$

Ответ запишите в СИ в виде:

$$(\overline{R} \pm \Delta R) = (M),$$

$$\delta_{\overline{R}} = \qquad (\%).$$

2. Расчет длины волны λ

Запишите радиус кривизны линзы R (м).

Постройте график зависимости $r_2^2 = f(m)$. Определите по нему контакт между линзой и плоской пластиной. Тангенс угла наклона этой прямой равен:

$$\lambda R = \frac{r_{\min 2}^2}{m}$$

Среднее значение длины волны:

$$\bar{\lambda} = \frac{r_{\min 2}^2}{m} \cdot \frac{1}{R} \qquad (M)$$

Относительная погрешность:

$$\delta_{\bar{\lambda}} = \left(\frac{2\Delta r_{\min 2}}{r_{\min}} + \frac{\Delta R}{R}\right) \cdot 100\%$$

При расчете используйте данные табл. 12.1 и 12.2 с учетом 36-кратного увеличения линзой 6 изображения колец на экране.

Абсолютная погрешность $\Delta \lambda$:

$$\Delta \lambda = \frac{\delta_{\overline{\lambda}} \cdot \overline{R}}{100} \qquad (M)$$

Ответ запишите в СИ в виде:

$$(\overline{\lambda} \pm \Delta \lambda) = (M),$$

$$\delta_{\overline{\lambda}} = (\%).$$

Библиографический список

а) основной

 Савельев И.В. «Курс общей физики» Кн. 4. М.: ООО «Издательство АСТ», 93 – 96 с, 119–121с.

2. *Капуткин Д.Е., Шустиков А.Г.*, Физика: Обработка результатов измерений при выполнении лабораторных работ. М.: МИСиС, 2007. 108 с. (№ 805)

б) дополнительный

3. *Ландсберг Г.С.* Оптика: учеб. пособие для студ. физических спец. вузов. – 9-е изд., перераб. и доп. – М.: Физматлит. 2003. 848 с.

4. *Фейнман Р., Лейтон Р., Сэндс М.* Фейнмановские лекции по физике, книга 3. Излучение. Волны. Кванты. – М.: Мир. 1965. С.225.

5. *Наими Е.К.* Интерференция света при отражении от тонких пластинок и пленок.// Физическое образование в вузах. – 2013. Т.19. № 3. С. 123-130; – Сайт <u>http://sp.misis.ru</u> Институт Базового Образования. Кафедра физики. Студенческий Учебный Ресурс. Методические указания.

Контрольные вопросы

1. Что такое когерентность?

2. Когда наблюдаются интерференционные полосы равной толщины? Приведите пример.

- 3. Что такое оптическая разность хода и оптическая разность фаз? Какова связь между ними?
- 4. В каких случаях при интерференции света в тонких пленках оптическая разность хода меняется на $\lambda/2$?
- 5. Каковы условия максимума и минимума при наблюдении интерференционной картины?
- 6. Чем отличается интерференционная картина при наблюдении колец Ньютона в отраженном и проходящем свете?
- 7. Как меняются радиусы колец Ньютона при изменении длины волны светы и показателя преломления среды при изменении заполнения среды между линзой и плоскопараллельной пластиной?