Фамилия, имя, отчество	Савченко Елена Сергеевна
Должность, ученая степень, ученое звание	Доцент кафедры физического материаловедения, к.фм.н.
Корпоративная электронная почта	savchenko.es@misis.ru
Рабочий телефон	495-955-01-63
Область научных интересов	Физическое материаловедение, магнитные материалы,
	постоянные магниты, рентгеноструктурный анализ
Трудовая деятельность – год,	С 2009 г. – 2012 г. НИТУ МИСИС, НИЛ постоянных
организация, должность	магнитов, лаборант-исследователь
	2012 г 2017 НИТУ МИСИС, кафедра физического
	материаловедения, инженер І категории
	2017 г по наст. время НИТУ МИСИС, кафедра
Образование	физического материаловедения, доцент 9.2006 г. – 2.2012 г. НИТУ МИСИС
Образование Дополнительное образование	Институт новых материалов и нанотехнологий
	Квалификация инженер-физик по специальности «Физика
	металлов», диплом с отличием
Основные результаты	ФОРМИРОВАНИЕ СТРУКТУРЫ И МАГНИТНЫХ
деятельности (перечисление	СВОЙСТВ СПЛАВА Fe2NiAl ПОСЛЕ ЛИТЬЯ И
достигнутых результатов)	ЗАКАЛКИ ИЗ РАСПЛАВА Кандидатская диссертация,
	2016;
	Более 50 публикаций в рейтинговых журналах, участие в
	грантах и проектах кафедры, участие в международных
	проектах (CERN)
Значимые	1. «ФОРМИРОВАНИЕ ОПТИМАЛЬНОЙ
исследовательские/преподавател	МОДУЛИРОВАННОЙ СТРУКТУРЫ В ЛИТЫХ И
ьские проекты, гранты (тема,	БЫСТРОЗАКАЛЕННЫХ СПЛАВАХ НА ОСНОВЕ
заказчик, год, полученные	СИСТЕМЫ Fe-Ni-Al C ПОВЫШЕННЫМИ
результаты)	МАГНИТНЫМИ СВОЙСТВАМИ» в рамках проектной
	части Государственного задания ВУЗам в сфере научной
	деятельности. 2014-2016 г., исполнитель; 2. «РАЗРАБОТКА ПЕРСПЕКТИВНЫХ МАТЕРИАЛОВ
	ДЛЯ СБОРА БРОСОВОЙ МЕХАНИЧЕСКОЙ И
	ТЕПЛОВОЙ ЭНЕРГИИ НА ОСНОВЕ ПЬЕЗО- И
	ПИРОЭЛЕКТРИЧЕСКИХ ЭФФЕКТОВ» в рамках
	программы ФЦП «Исследования и разработки по
	приоритетным направлениям развития
	научно-технологического комплекса на 2014-2020 годы»,
	2016-2017, исполнитель.
	3. РНФ 23-13-00161 "Реализация магнитотвердого
	состояния в безредкоземельных сплавах Mn-Al-X (Ga,C,
	Cu) для применения в электромеханических машинах"
	2023-2025 гг., исполнитель.
Значимые публикации (список,	1. ВЛИЯНИЕ МАГНИТОИМПУЛЬСНОЙ ОБРАБОТКИ
не более 10)	НА СОСТОЯНИЕ ПОВЕРХНОСТИ, ЭМИССИОННЫЕ И

МАГНИТНЫЕ СВОЙСТВА АМОРФНЫХ МАГНИТНЫХ СПЛАВОВ

Шипко М.Н., Степович М.А., Сибирев А.Л., Тихонов А.И., Савченко Е.С., Каминская Т.П.

Известия Российской академии наук. Серия физическая. 2021. T. 85. № 11. C. 1528-1531.

2. НАНОПРОВОЛОКИ ИЗ СПЛАВОВ FECO И FENI: ПОЛУЧЕНИЕ, МИКРОСКОПИЯ И СВОЙСТВА

Загорский Д.Л., Долуденко И.М., Каневский В.М., Гилимьянова А.Р., Менушенков В.П., Савченко Е.С.

Известия Российской академии наук. Серия физическая. 2021. T. 85. № 8. C. 1090-1096.

3. ВЛИЯНИЕ МАГНИТОИМПУЛЬСНОЙ ОБРАБОТКИ НА ЭМИССИОННЫЕ И МАГНИТНЫЕ СВОЙСТВА ПОВЕРХНОСТНОГО СЛОЯ АМОРФНЫХ СПЛАВОВ, ИСПОЛЬЗУЕМЫХ В ЭЛЕКТРОТЕХНИКЕ

Шипко М.Н., Сибирев А.Л., Степович М.А., Тихонов А.И., Савченко Е.С.

Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2021. № 9. С. 80-85.

4. ХИМИЧЕСКИЙ СИНТЕЗ И ИССЛЕДОВАНИЕ НАНОПОРОШКОВ МАГНИТОТВЁРДОГО СПЛАВА ND15FE78B7

Абдурахмонов О.Э., Юртов Е.В., Савченко А.Г., Савченко Е.С.

В книге: VII Всероссийская конференция по наноматериалам. Сборник материалов. 2020. С. 197-198.

5. ВЛИЯНИЕ МАГНИТОИМПУЛЬСНОЙ ОБРАБОТКИ НА СОСТОЯНИЕ ПОВЕРХНОСТИ, ЭМИССИОННЫЕ И МАГНИТНЫЕ СВОЙСТВА АМОРФНЫХ МАГНИТНЫХ СПЛАВОВ

Шипко М.Н., Тихонов А.И., Сибирев А.Л., Степович М.А., Савченко Е.С.

В сборнике: Электромагнитное поле и материалы (фундаментальные физические исследования). материалы XXVIII Международной конференции. Москва, 2020. С. 12-18.

1. Magnetic and structural properties of Co-substituted barium hexaferrite synthesized by hydrothermal method

Mironovich, A.Y., Kostishin, V.G., Al-Khafaji, H.I., Savchenko, E.S., Yamilov, S.E.

	Journal of Magnetism and Magnetic Materials, 2023, 588, 171469
	2. Composition and Magnetic Properties of Composites Based on Ultrafine NiFe2O4 Particles Produced under Conditions of Low-Temperature Underwater Plasma
	Khlyustova, A.V., Shipko, M.N., Stepovich, M.A., Sirotkin, N.A., Savchenko, E.S.
	Bulletin of the Russian Academy of Sciences: Physics, 2023, 87(10), страницы 1549–1551
	3. EFFECT OF MAGNETIC PULSE TREATMENT ON THE STATE OF THE SURFACE, EMISSION, AND MAGNETIC PROPERTIES OF AMORPHOUS MAGNETIC ALLOYS
	Shipko M.N., Sibirev A.L., Tikhonov A.I., Stepovich M.A., Savchenko E.S., Kaminskaya T.P.
	Bulletin of the Russian Academy of Sciences: Physics. 2021. T. 85. № 11. C. 1191-1194.
	4. EFFECT OF MAGNETIC-PULSE PROCESSING ON THE EMISSION AND MAGNETIC PROPERTIES OF THE SURFACE LAYER OF AMORPHOUS ALLOYS USED IN ELECTRICAL ENGINEERING
	Shipko M.N., Tikhonov A.I., Sibirev A.L., Stepovich M.A., Savchenko E.S.
	Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2021. T. 15. № 5. C. 970-974.
	5. Zagorskiy, D.L., Doludenko, I.M., Kanevsky, V.M., Gilimyanova, A.R., Menushenkov, V.P., Savchenko, E.S.
	The Obtaining, Microscopy, and Properties of FeCo and FeNi Alloy Nanowires
	(2021) Bulletin of the Russian Academy of Sciences: Physics, 85 (8), pp. 848-853.
	6. Abdurakhmonov, O.E., Yurtov, E.V., Savchenko, E.S., Savchenko, A.G.
	Chemical synthesis and research nanopowder of magnetic hard alloy Nd15Fe78B7
	(2020) Journal of Physics: Conference Series, 1688 (1), статья № 012001
Индекс Хирша по Scopus	9
Количество статей по Scopus	45 2018-8900
SPIN РИНЦ ORCID	0009-0006-5295-350X
ResearcherID	877122
Scopus AuthorID	56446501200

Научное	Преподаваемые курсы:
руководство/Преподавание	«Кристаллография»
	«Методы исследования материалов»
	«Измерение магнитных характеристик МТМ» - в рамках
	производственной практики магистров кафедры