Ученые НИТУ «МИСиС» создали «вечный» катализатор на основе наноматериалов

Ученые НИТУ «МИСиС» создали «вечный» катализатор на основе наноматериалов

Научный коллектив НИТУ «МИСиС» под руководством профессора Александра Мукасьяна, совершенствуя метод самораспространяющегося высокотемпературного синтеза, получили уникальный катализатор, который в процессе работы не деградирует и не загрязняется, поэтому функционирует в десятки раз дольше обычных катализаторов. Ускоритель интенсивно работает уже несколько лет, поэтому ученые даже в шутку называют его «вечным». Катализаторы применяются для получения наноматериалов, а также для дожигания топлива в автомобилях и позволяют уменьшить выброс вредных веществ в атмосферу.

Создание наноразмерных материалов с заданными свойствами сопровождается рядом сложностей. Большинство методов не позволяют получить конечный материал с требуемыми наноразмерами (например, размер менее 10 нм важен с точки зрения магнитных характеристик) и высокой удельной поверхностью (влияет на каталитическую активность). Для создания многих наноматериалов необходимо специальное сложное оборудование и высокие энергозатраты.

Самораспространяющийся высокотемпературный синтез (СВС) в растворах или «горение растворов» — альтернативный способ синтеза наноматериалов. В основе процесса — самоподдерживающаяся экзотермическая реакция (горение) взаимодействия компонентов на основе систем, содержащих окислитель (нитрат металла) и восстановитель (растворимые в воде линейные и циклические органические амины, кислоты и аминокислоты). Химическая реакция интенсивно распространяется в растворе, по мере того, как она угасает, формируются конечные продукты, то есть происходит единый процесс горения и получения материалов. В растворах исходные реагенты смешаны на молекулярном уровне, а выделение большого количества газов при взаимодействии реагентов в волне горения облегчает формирование нанопорошков с заданными характеристиками.

Как отметила ректор НИТУ «МИСиС» Алевтина Черникова, «профессор Александр Мукасьян, директор научно-исследовательского центра „Конструкционные керамические наноматериалы“ НИТУ „МИСиС“ — один из самых известных в мире специалистов в области твердого пламени. Научный коллектив под его руководством ведет успешную работу по новым перспективным направлениям в области синтеза наноматериалов. Полученные материалы будут использоваться в топливных и солнечных элементах, конденсаторах и аккумуляторах нового поколения, а также в „вечных“ катализаторах».

Ученые Научно-исследовательского центра «Конструкционные керамические наноматериалы» НИТУ «МИСиС», экспериментально изучая синтез материалов «горением растворов» с использованием методологии физики и химии горения, добились впечатляющих результатов. Поместив смесь из нитрата никеля и глицина в высокопористую среду, и запустив реакцию, они получили новый тип суперстабильного катализатора, который в процессе работы не деградирует и не загрязняется. Обзор исследований в этой области был опубликован в авторитетном журнале Chemical Reviews.

По словам заместителя директора Научно-исследовательского центра «Конструкционные керамические наноматериалы» НИТУ «МИСиС» профессора Александра Рогачева, «наши исследования позволяют пролить свет на механизмы, лежащие в основе процесса синтеза наноматериалов путем СВС в растворах. За внешне простым и красивым процессом скрываются сложные механизмы, природу которых понять очень трудно, но если это сделать, то ученые смогут получать наноматериалы с новыми удивительными свойствами».

«Горение растворов» открывает широкие возможности для развития современной энергетики. Получаемые нанопористые материалы применяются в новых типах топливных, солнечных элементов, суперконденсаторах и аккумуляторах, а также термоэлектриках (используются в термоэлектрогенераторах для преобразования тепла в электричество). Они востребованы в водородной энергетике, например для конвертирования углеводорода в метан или получения чистого водорода из этанола, и могут применяться в качестве люминофоров — веществ, способных преобразовывать поглощаемую ими энергию в световое излучение.